
Valuation of Structured Products∗

Geng Deng, PhD, CFA, FRM† Tim Husson, PhD, FRM‡

Craig McCann, PhD, CFA§

February 3, 2014

Abstract

The market for structured products has grown dramatically in the past decade. Their
diversity and complexity has led to the development of many different valuation approaches,
and which approach to use to value a given product is not always clear. In this paper
we demonstrate and discuss four approaches to valuing structured products: simulation of
the linked financial instrument’s future values, numerical integration, decomposition, and
partial differential equation approaches. As an example, we use all four approaches to value
a common type of structured product and discuss the virtues and pitfalls of each. These
approaches have been practically applied to value 20,000 structured products in our database.
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Valuation of Structured Products

Structured products have become a huge financial market. Bloomberg estimates that from 2010-
2013 banks issued $174 billion in structured products in the United States and another $318 billion
globally.1 Structured products have evolved into highly complex instruments that incorporate
features and conditions that are difficult to value. In addition, structured products are now often
linked to not one but several underlying securities, making valuation all the more difficult.

While the academic literature has offered a variety of approaches for handling these features,
no single valuation approach is appropriate for all structured products and the merits across
these approaches are not always obvious.2 In this paper we review the four primary approaches
for valuing structured products, and offer our experience of valuing more than 20,000 products
released over the past several years. We outline the advantages and disadvantages of each approach
and identify the types of products most appropriate for each method. We stress that while similar
valuations can often be obtained using several approaches, each approach offers different insight
into the composition of the notes.3

We especially highlight how each approach handles the credit risk of the issuer. The 2008
bankruptcy of Lehman Brothers, one of the largest issuers of structured products, offered a dra-
matic demonstration of the importance of incorporating credit risk into product valuations. While
it is widely recognized in the academic literature that structured products are sold at a substantial
premium,4 what is less appreciated is the magnitude of credit risk in those valuations. Tnvestors
may continue to purchase structured products despite the known price premium because that they
do not fully appreciate the inherent credit risk and mispricing of these investments.5 We describe
how credit risk is incorporated into each type of structured product valuation method, allowing
practitioners an informed choice of valuation approaches.

In the following section we describe several complexities of structured products that can affect
the choice of valuation approach. Section 3 explains the four valuation approaches and how they
can handle each of these product features. Section 4 walks through the implementation of each
of these approaches to value a common type of structured product, a Morgan Stanley Buffered
PLUS. Section 5 describes our conclusions.

1 Bloomberg Structured Notes Brief, January 6, 2011, January 5, 2012, 2012 Review and 2013 Outlook (January
3, 2013), and 2013 Year End Review (January 9, 2014).

2 See for example Doebeli and Vanini (2010), Bernard and Boyle (2008), Bergstresser (2008), Bethel and Ferrel
(2007), and Alexander and Venkatramanan (2009).

3 The approaches described here can also be used to value structured certificates of deposit. The market for
structured certificates of deposit is estimated to be in the tens of billions of dollars and growing, see Deng et al.
(2013) for details. Variable annuity issuers are also releasing products based on structured product-like payoffs,
which can be valued using similar approaches, as we describe in Deng et al. (2014a).

4 See especially Deng et al. (2012) and Henderson and Pearson (2010).
5 See for example Deng et al. (2011b), Deng et al. (2011a), Deng et al. (2010), and Deng et al. (2009).
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Valuation of Structured Products

Common Structured Product Features

Structured products have varied and complex payoff structures. In this section we describe some
of the characteristics that differentiate products.

UNDERLYING ASSETS Structured products are very often tied to the S&P 500, NASDAQ
100, or other broad stock index, but can also be linked to a very wide variety of other asset classes.
Figure 1 shows the distribution of structured products released from 2010-2012 amongst various
asset classes.6

Figure 1: Structured Product Issuances by Underlying Asset Class

It is important for investors to thoroughly understand the underlying asset or index to which
a structured product is linked. Indexes are now available that use extremely complex and sophis-
ticated investment strategies that can lead to unexpected risk and return profiles. For example,
a 2008 structured product from Lehman Brothers was linked to an index that tracked a complex
bundle of commodities that dynamically allocated between different assets based on conditions
in their respective futures markets.7 While this product had a simple payoff structure, the un-
derlying index involved complex calculations of the returns to many assets, making this type of
product particularly risky and difficult to model.8 We have noted that more and more structured

6 Source: Bloomberg Structured Notes Briefs dated January 5, 2012 (page 9), January 6, 2011 (page 11), and 2012
Review and 2013 Outlook (January 3, 2013, page 7). Reverse convertibles can be linked to a variety of underlying
assets, but are listed separately because their payout can be in the form of the asset itself.

7 Lehman Brothers Medium-Term Notes, Series I, 100% Principal Protected Notes Linked to ComBATS I due
August 7, 2012. CUSIP: 5252M0GJ0

8 For a more recent example, consider the $235 million JP Morgan Return Notes Linked to the J.P. Morgan
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securities, including structured products and structured certificates of deposit, have been linked
to proprietary indexes developed and calculated by issuers.

Valuation is easier when the underlying asset of a product has both an observable daily market
price as well as an actively traded options market, as such assets have readily accessible corre-
lation and implied volatility estimates. Other assets may require complex forward volatility and
correlation models that can be difficult to implement and calibrate; in this paper, we assume that
the underlying assets have reliable implied volatility and correlation information.

Structured products, like common derivatives such as options, generally link to the price of
underlying assets, but do not give investors any dividends paid by those assets. For notes linked
to assets paying high dividend yields, the payoffs are generally lower than they would be if the
structured product were linked to the total return of the underlying asset rather than its price
return.

PRINCIPAL PROTECTION
Principal protection absorbs a portion of the linked security’s capital losses. Principal protection

always requires that the structured product be held to maturity, and is void if the issuer defaults
on the product. If a product is 100% principal protected, the investor will not lose money on the
investment as long as the product is held to maturity and the issuer does not default. A product
with more than 0% but less than 100% principal protection is called a “partial principal protected”
or “buffered” product.

Principal protection and buffers are easily modeled with any of the approaches discussed here.
Perhaps the most intuitive method is decomposition, where full principal protection on a long
position could be modeled as an at the money put option. A buffer feature would then correspond
to an additional short put option, where the degree of buffering could be thought of as the out-
of-the-moneyness of the option. Our subsequent discussion of the Buffered PLUS product below
includes treatment of buffers using all four approaches.

CONTINGENT CLAIMS
Some structured products have triggers, or specific return levels which yield contingent outcomes.

For example, Citigroup’s ELKS are simple bonds unless the trigger is tripped (the underlying
security’s returns surpass a predefined value), at which point the ELKS becomes a forward contract
on the linked security. Other products, like absolute return barrier notes (‘ARBNs’, issued by UBS,
HSBC, Deutsche Bank, and Lehman Brothers) have payoffs that depend on the size–but not the
direction–of the linked security’s return.9 As long as the linked security’s price does not go up
or down by more than a pre-specified amount, the structured product pays the absolute value of
the return. If the linked security’s capital gain or loss exceeds the trigger, the investor earns a

Enhanced Beta Select Backwardation Alternative Benchmark Total Return Index due November 27, 2018, issued
on November 22, 2013 (CUSIP: 48126NTE7).

9 See Deng et al. (2011a)
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Valuation of Structured Products

0% return regardless of the linked security’s future price movement. Most contingent claims, such
as the ones in Buffered PLUS products, are clearly defined at a particular return level and can
therefore be incorporated into any valuation approach.

COUPONS
Relatively few non-interest rate linked structured products pay coupons. Of those that do, most

also have contingent claims, such as reverse convertibles and autocallables. Products without
coupons instead rely on the linked security’s capital gains to provide investors with a positive
return. Coupon payments can be incorporated into any valuation approach, though for highly
complex coupon payout formulas the simulation approach can often handle this feature most
explicitly.

CALL FEATURES
Some structured products can be called by the issuer. Callable products generally guarantee a

specified rate of return. Some products are called at the discretion of the issuer, while others are
autocallable. Autocallable products are automatically called if a given criteria is satisfied on a
predefined call date. Products can have embedded American or Bermudan call options. American
options can be exercised by the issuer any time before the structured product’s maturity date.
Bermudan options can be exercised on specific dates during the life of the product (e.g. quarterly).
The final call date is always the product’s maturity date.

Call features can be among the most difficult product features to value. Autocallable products
are relatively easier, as the call feature is predictable, but discretionary call features necessitate
simulation approaches. A rigorous implementation of a simulation-based valuation for callable
interest-rate linked structured products can be found in Andersen and Piterbarg (2010).

LEVERAGE
Structured products can give investors leveraged (or deleveraged) exposure to the underlying

security’s returns. Typically, the leveraged returns are only for a certain subset of possible returns,
such as leveraged upside for returns between 0-10%. The decomposition approach illustrates this
most clearly, as the issuer can just purchase more of the call or put option that generates the
relevant return (two long call options, for example, generate 200% participation).

BASKETS
Some products are linked to combinations (‘baskets’) of two or more linked securities. The

payoff of the product is normally linked to the basket as a whole. However, some products allow
the issuer to use the worst performing member of the basket to determine the product’s payoff.
When products are linked to baskets, any valuation must also take into account the co-movement
among the basket members. There is considerable leeway in calculating this co-movement, but it
is typically the correlation of daily returns of the underlying basket members over a reasonably
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large period of time, perhaps three months.10 However the exact length of time is a subjective
judgment, as the correlation structure between basket entities can change with time, but a suitable
sample size must be achieved.

A structured product may have several or none of these characteristics. For example, Morgan
Stanley’s Performance Leveraged Upside Security (also called a PLUS) pays no coupon and is
usually not callable. The PLUS exposes investors to all the downside risk of a single linked security
along with levered but often capped upside potential. Some PLUS products offer partial principal
protection. This partially principal-protected PLUS is sold as a Buffered PLUS by Morgan Stanley,
a Partial Protection Return Optimization Security by UBS and Lehman Brothers, and an Equity
Buffer Note by HSBC. For continuity, we will use a Buffered PLUS as the example throughout
this paper.

Different product types have somewhat different return characteristics. In Deng et al. (2014b),
we calculated an index of ex post structured product returns by valuing over 20,000 products each
day from 2007 through 2013. We also calculated sub-indexes based on four common structured
product types: autocallables, tracking securities, reverse convertibles, and single-observation re-
verse convertibles. Our results for both the aggregate and sub-indexes demonstrate that structured
products as a whole have high correlations with equity markets, though lower returns. Those lower
returns are in large part attributable to the issue date mispricing.

Valuation Approaches

In this paper, we discuss four structured product valuation approaches: 1) simulation, 2) numerical
integration, 3) decomposition and 4) partial differential equations (PDE) approaches. While these
approaches produce consistent valuations for simple products, not all approaches are appropriate
for all products and they can vary in complexity and difficulty of implementation.

In general, structured product payoffs can be described as functions of the underlying security’s
level (e.g., stock price) or return. For example, the payoff rule of a Buffered PLUS is a function of
the underlying security’s level or holding period return at the structured product’s maturity. In
this paper, we use P (ST ) as the functional form of payoff rules that are a function of the underlying
security’s ending stock price.

Because the underlying security’s holding period return, Rt, is a function of the security’s stock
price

Rt =
St − S0

S0

,

the functional form of the payoff rule can also be expressed in terms of the underlying security’s
return. We use f(RT ) as the functional form of payoff rules that depend on the underlying
security’s return over the life of the structured product, where P (ST ) = I · (1 + f(RT )) and I is

10 One approach to approximating the value of basket options is presented in Alexander and Venkatramanan (2009).
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Valuation of Structured Products

the face value of the structured product. The Buffered PLUS’ payoff rule, graphed in Figure 2,
can be expressed algebraically as

f(RT ) =

{
min(αRT , Cap), if RT ≥ 0;
min(RT + Buffer , 0), if RT < 0.

(1)

Figure 2: Payoff Rule for Buffered PLUS Structured Products

Assumptions Common to all Four Approaches

Each of the four approaches discussed in the following sections relies on a common set of assump-
tions. In this section we briefly discuss each assumption.

Generalized Wiener Process of Stock Prices
We assume stock prices follow a generalized Wiener process with a fixed drift (Glasserman, 2003;

Hull, 2011; McLeish, 2004). The Wiener process is algebraically denoted as

dSt = Stµdt+ StσdZt, (2)

or equivalently

d lnSt =

(
µ− σ2

2

)
dt+ σdZt, (3)

such that St is a geometric Brownian motion.
The generalized Wiener process results in an ending stock price ST that is log-normally dis-

tributed
7



Valuation of Structured Products

ST ∼ S0 · Log-N
((

µ− σ2

2

)
T, σ
√
T

)
, (4)

which is equivalent to

ln(ST ) ∼ lnS0 +N
((

µ− σ2

2

)
T, σ
√
T

)
, (5)

where N (µ̂, σ̂) is a normal distribution with mean µ̂ and standard deviation σ̂. This directly
implies that the holding period return RT = ST−S0

S0
must also be log-normally distributed

RT ∼ Log-N
((

µ− σ2

2

)
T, σ
√
T

)
− 1. (6)

The Underlying Security’s Expected Return
Like the Black-Scholes model, we value structured products in a risk-neutral framework (Bjork,

2004; Hull, 2011). Consequently, the expected annualized return for a structured product’s un-
derlying security is based on the risk-free rate r.11 Because structured product payoff rules ignore
dividends, we follow the dividend modification of the Black-Scholes model and reduce the risk-free
rate by q, the dividend yield on the underlying security. This means that the underlying security’s
risk-neutral expected return, µ, is

µ = r − q. (7)

The Underlying Security’s Implied Volatility
The volatility, σ, of the linked security’s return is typically estimated as the volatility needed

to make traded options fairly priced using the Black-Scholes model. Where possible, we match
the option’s and structured product’s time to expiration. In cases where the structured product’s
remaining term falls between two option maturities, we use linear or quadratic interpolation to
estimate the implied volatility. In the rare case when no options can be found for the underlying
security, we use the underlying security’s historical volatility.

Assumptions about the Discount Rate
To estimate the issue date value of a structured product, the expected cash flows must be

discounted back to time t = 0. Because the structured product is exposed to both the risk of the
underlying security and the issuer’s credit risk, we include the issuer’s credit default swap spread
(CDS) in the discount rate (Hull, 2011). We match the term of the CDS with the term of the
structured product.

11 For simplicity, all returns in this paper are annualized and continuously compounded.
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Valuation of Structured Products

The Simulation Approach

Simulation has been proven to be a practical, useful tool for valuing financial products (Glasserman,
2003; McLeish, 2004). Of the four approaches discussed in this paper, the simulation approach is
the most “brute force” in that it relies on computing power to perform Monte Carlo simulations
of the linked security’s price path. The Monte Carlo results are then input into the product’s
payoff rule to calculate the exact cash flows that would result from each simulated price path. The
structured product’s estimated fair value is the average of the discounted cash flows derived from
the simulations. For structured product valuations, we use widely-accepted financial models to
simulate security levels and returns, interest rates, and exchange rates.

To simulate stock prices following the generalized Wiener process, suppose we track stock prices
at discrete time intervals S0, St1 , . . . , Sti , Sti+1

, . . . , ST , and constant interval

∆t = ti+1 − ti.

At each step, we assume the stock price updates according to

Sti+1
= Sti · eµ∆t+σ

√
∆tWi (8)

where Wi is a standard normally distributed variable.
To value a structured product, we typically simulate J = 50, 000 price paths of the underlying

security from t = 0 to t = T . On the jth trajectory, suppose the ending stock price is SjT and the
holding period return is Rj

T . The structured product’s payoff for the jth simulated price path is
calculated by inputting SjT into the mapping rule P (ST ) or Rj

T into f(RT ). We repeat the process
for each of the 50,000 simulated price paths and calculate the average payoff. The average payoff
is then discounted back to time t = 0 as shown in Equations (9) and (10).

PV (ST ) = e−(r+CDS)T 1

J

J∑
j=1

P (SjT ) (9)

PV (RT ) = e−(r+CDS)T I

(
1 +

1

J

J∑
j=1

f(Rj
T )

)
. (10)

The discounted expected payoff is the issue date value of the structured product.
Except for products with explicit American or Bermuda options, we have been able to value any

structured product using the simulation approach.12 In addition to being versatile, the simulation

12 The American and Bermuda options mentioned here are explicitly part of the payoff rule. For example, some
structured products allow the issuer to call the product at various dates prior to maturity.
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approach is intuitive and easy to understand. The benefits of the simulation approach are offset,
however, by the extensive programming time and computing power needed to perform a simulation,
as well as the potential lower accuracy of the resulting fair values.

The simulation approach allows us to value structured products that are linked to a wide variety
of securities including individual stocks, indices, interest rates, currency exchange rates or baskets
of securities. The academic literature is constantly making advances in simulation efficiency, such
as quasi-Monte Carlo and importance sampling approaches (Glasserman, 2003).

The simulation method can also be applied to calculate ‘Greeks,’ the sensitivity measures of
derivative financial instruments. The Greeks are useful for traders to hedge risks in a portfolio
containing structured products. The general procedure for calculating Greeks using simulations is
to introduce an infinitesimal change in a chosen parameter, such as the risk free rate, volatility,
etc, and to measure the resulting change in the fair value of the product. Since simulation intro-
duces random noise in fair value estimations, fixing common random seeds is a must in running
simulations. This practice can significantly improve the accuracy of estimating Greeks.

Besides using the generalized Wiener process to simulate stock prices,13 we also use it to
simulate currency exchange rates, where S0 is the spot exchange rate, the “expected return,” µ,
is the difference between the risk-free rates of the countries whose currencies are included in the
exchange-rate forward contract, and the volatility, σ, is the implied volatility of the exchange rate.
The generalized Wiener process results in log-normally distributed currency exchange rates, like
it does for stock and index returns. To simulate short interest rates we use the Cox, Ingersoll and
Ross model in Cox et al. (1985). To simulate forward interest rates we use the Heath, Jarrow and
Morton model in Heath et al. (1992). Of course, other interest models (such as the Libor Market
Model) can be used as well.14

The Numerical Integration Approach

The numerical integration approach values structured products more quickly and more accurately
than the simulation approach (Glasserman, 2003), but only works for a subset of structured prod-
ucts. Numerical integration directly utilizes the fact that the structured product’s payoff rule is a
function of a variable with a known distribution, such as ST (see Equation (4)) or RT (see Equation
(6)).

The numerical integration approach is generally more accurate than the simulation approach
because, unlike simulations which rely on the Law of Large Numbers to produce reliable valuations,
the numerical integration approach considers the probability of virtually all possible outcomes by
integrating the product of the return distribution and the payoff rule. As in the simulation ap-
proach, given the structured product’s payoff rule and the distribution of the underlying security’s

13 When the linked security is a basket of securities, we use a multi-variate generalized Wiener process and include
the entire variance-covariance matrix of the securities in the simulation.

14 For an extensive treatment of interest rate models, see Andersen and Piterbarg (2010).
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return, the present value of the structured product is

PV (RT ) = e−(r+CDS)T I

(
1 +

∫ ∞
−1

f(RT )pdf(RT )dRT

)
. (11)

Note that Equation (10) converges to Equation (11) as J →∞.
There are many valid numerical integration methods, such as the adaptive Simpson method

using the Simpson quadrature (McKeeman, 1962) and the adaptive Lobatto method (Ueberhuber,
1997). Numerical integration approaches differ in how they generate sample points and assign
weights to each sample, but should all estimate the same fair value. More advanced numerical
integration approaches involve numerical expansions, such as Fourier series expansion (Carr and
Madan, 1999) or Fourier cosine series expansion (Fang and Oosterlee, 2008). When the underlying
return has a smooth distribution, such as a normal distribution, the expansion terms could achieve
an exponential convergence rate to the integral value. High accuracy results are typically obtained
with less than 100 expansion terms.

One drawback to the relatively fast and accurate numerical integration approach is that its use
is limited to structured products whose payoffs are a function of variables with known distributions.
This can be a problem, for instance, when valuing products whose payoffs depend on the linked
security’s maximum or minimum price over the life of the structured product. For structured
products with these path-dependent payoff functions,15 the numerical integration approach can be
used, but requires transforming the path-dependent payoff function into an equivalent portfolio
of path-independent payoff functions. Published papers such as Breeden and Litzenberger (1978)
and Carr and Chou (1997) demonstrate how to transform the path-dependent payoff rules.

Using the numerical integration approach, the Greeks are calculated by taking derivatives of
the payoff integral with respect to parameters such as S0 (the initial price) or r (the risk-free rate).

For example, consider delta, the sensitivity of the structured product’s value to the stock price
St:

∆t =
∂PV

∂St
. (12)

A transformation will simplify the integral. We introduce a new variable W = lnST−µ̂
σ̂

, where

µ̂ = lnSt + (µ− σ2

2
)(T − t) and σ̂ = σ

√
T − t are the parameters of the distribution of ST |St. The

variable W is thus a standard normal variable. It follows that

∆t =
∂PV

∂St

15 A path-dependent payoff function depends on one or more historical prices over the life of the structured product
and can be written as P (~St), t = [0, t1, t2, . . . , T ]. A path-independent payoff function depends only on the final
price, ST , of the underlying security.
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=
∂

∂St

(
e−(r+CDS)T

∫ ∞
−∞

P (eWσ̂+µ̂)pdf(W )dW

)
= e−(r+CDS)T

∫ ∞
−∞

P ′(eWσ̂+µ̂)
eWσ̂+µ̂

St
pdf(W )dW.

If P (ST ) is a piecewise linear function (as in Buffered PLUS), then P ′(St) is a Heaviside step
function.

The Decomposition Approach

The decomposition approach can be applied to any product for which the payoff can be decomposed
into a combination of conventional debt instruments, call and put options, and exotic options
such as double-barrier options. After the payoff of a structured product is broken down into an
equivalent portfolio of simpler financial instruments, each component of the portfolio is valued
using the appropriate formula (such as the Black-Scholes model for valuing call and put options).
This method is faster than the simulation method, uses less computing power, and does not require
that the product’s underlying security have a continuous, integrable return distribution like the
numerical integration method. However, because not all structured product payoff rules can be
broken down into components with simple formulaic solutions, the decomposition only works for
a subset of structured products.

A significant advantage of the decomposition approach is its usefulness in characterizing a
structured product’s payoff rule in terms of other financial products. This can help investors
understand the risks involved in the product, and see how they might create a more liquid version
of the product by investing in the equivalent portfolio rather than the structured product.

In addition to plain-vanilla options, decompositions can also involve more complex, exotic op-
tions such as “down-and-in” single-barrier options (Hernández et al., 2007; Szymanowska et al.,
2009). Down-and-in put options are inactive (do not pay out at maturity) unless a lower barrier
is breached. If the underlying security ever goes below the lower barrier, the options become
active puts. Allowing exotic options like the down-and-in put options in the structured prod-
uct’s equivalent portfolio expands the number of structured products that can be valued with the
decomposition approach.

Like the numerical integration approach, the decomposition approach is useful for calculating
the structured products ‘Greeks’. For example, the delta of the structured product is simply the
sum of the deltas of each component.

The PDE Approach

The PDE approach can be used to value any structured product, but is by far the most difficult
to implement. Like the simulation approach, PDE captures the dynamic nature of the structured
product’s and linked security’s values (Black and Scholes, 1973; Henderson and Pearson, 2010;
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Wilmott et al., 1994). However, rather than generating random numbers to predict the movement
of the linked security’s price, the PDE approach models the relations of product values and stock
price with partial differential equations. The various features of a structured product are included
in PDE as additional equations, or boundary conditions. Since PDEs with several boundary
conditions are relatively difficult to solve, only a handful of structured products result in closed-
form solutions. The remaining product types rely on numerical methods such as finite difference
approximation to obtain an approximate solution.

Like the simulation approach, the PDE approach assumes the underlying security price follows
a generalized Wiener process (see Equation (2)). If the risk-free interest rate and the volatility are
assumed to be constant across time, the PDE satisfies the Black-Scholes equation

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ (r − q)S∂V

∂S
− (r + CDS)V = 0, (13)

where the value of structured product V (S, t) depends on the the stock price S ∈ [0,∞) at time
t ∈ [0, T ]. After solving the equation, the issue date value of the structured product is simply
V (S0, 0).

The various properties of a structured product are included as boundary conditions in the
Black-Scholes equation. A few examples:

• At maturity, the market value of the structured product is equal to the product’s payoff.
The corresponding boundary condition is

V (S, T ) = P (ST ).

• If the security price hits 0 at time t and the structured product is principal protected, the
structured product’s value is the present value of its face value. The boundary condition is

V (0, t) = I exp−(r+CDS)∗(T−t) .

If the product is not principal protected, the structured product’s value is the present value
of the protected portion of its face value. The boundary condition is

V (0, t) = IBuffer · exp−(r+CDS)∗(T−t) .

• If the structured product can be called by the issuer, the structured product will never be
worth more than the call price Ĉt on the call date t. The boundary condition is

V (S, t) ≤ Ĉt.

• If the linked security pays a D dividend on ex-dividend date td, the value of the structured
product must be the same just before and after the dividend is paid. The condition is
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included as
V (S, t−d ) = V (S −D, t+d ),

where S remains constant from t−d through t+d , and t−d and t+d are just before and just after
the dividend is paid, respectively.

• If the structured product makes a coupon payment C at time tc, the value of the structured
note is reduced by C. At time tc, the value is updated

V (S, t−c ) = V (S, t+c ) + C.

The solution methods for the partial differential equations falls into two categories: closed form
solution and numerical solution. Unfortunately, majority of the partial differential equations can
only be solved numerically.

PDE produces a closed-form solution when the system of equations, including the boundary
conditions, is sufficiently simple and can be transformed into standard partial differential equations
(e.g., parabolic equation, through a change of variables.16). We show how this is done when we
value a Buffered PLUS in Section . Fourier transforms and other transforms are also helpful in
solving the equation in closed-form, with the solution being expressed in infinite summation form
of eigenfunctions (Hui, 1996).

Numerical methods are of various types, such as finite difference method and finite element
methods. Finite difference method is the most popular choice. One involves approximating the
partial differential terms ∂V

∂t
,∂

2V
∂S2 , and ∂V

∂S
with finite difference terms. The are three basic finite

difference approximations - explicit, inexplicit and Crank-Nicolson method. The θ-method, uses
an interpolating parameter θ to transform among these three methods.

Comparison of Valuation Approaches

While many products can be valued using any of the approaches described above, some struc-
tured product features make certain valuation approaches more difficult than others. Also, some
valuation approaches provide a stronger intuition for the underlying features or offer simpler imple-
mentation. We outline in Table 1 our experience regarding which valuation approaches are most
appropriate for several common product features including those we describe in Section . The
choice of valuation approach depends on the level of accuracy required, implementation difficulty
(especially the existence of closed-form solutions), and the overall purpose of the valuation itself.

The most important factor affecting the choice of valuation approaches is whether the payoff of
the structured product is linked just to the final value of the underlying asset at maturity, or the
specific path of values the asset takes over the life of the note. Path-dependent product features,
such as call features, are much less analytically tractable and typically require a simulation based

16 The process is called ‘dimensionless’ in Wilmott et al. (1994).

14



Valuation of Structured Products

Table 1: Preferred Valuation approaches for Several Product Features

Simulation Numerical Decomposition PDE
Integration

Callable (European) by Issuer + + +
Callable (American) by Issuer +
Callable (Bermudan) by Issuer + +
Maximum Allowable Return + + + +
Loss Buffer + + + +
Single-barrier (e.g. ELKS) + + +
Double-barrier (e.g. ARBN) + + +
Payoff Depends on Average Price + +
Basket of Linked Securities + + +
Linked Security is a Currency + + +
Pays Coupons + + + +
Minimum of a Basket +

approach. Structured products that only depend on final values, however, offer more flexibility. For
example, principal protection can be implemented in any valuation method, but the decomposition
approach most clearly demonstrates the combination of options used to generate the resulting
payoff, and can therefore be most directly compared to actual options prices if such a market
exists on the underlying.

Our discussion of these approaches so far has been based on a geometric Wiener process for asset
prices (Equation (2)). However, recent developments in financial modeling extend the constant
volatility assumption in this model to a stochastic volatility setting. Standard stochastic volatility
models include the Heston model, where time varying volatility is introduced following a CIR (Cox-
Ingersoll-Ross) type mean-reversion process (Heston, 1993). More recent models include general
Lévy based price models (Schoutons, 2003) where each change in an asset’s price is considered as
an instantaneous jump. Stochastic volatility models can capture more detailed features of stock
returns, such as skewness and kurtosis, than the traditional constant volatility model.

The simulation approach offers the most flexibility, and has been practically used in all varieties
of stochastic volatility models to simulate asset prices (Korn et al., 2010). However, this approach
can be computationally intensive. For example, when simulating the Heston model, two processes
need to be simulated (the asset price process and the volatility process). Stochastic volatility has
also been applied to the numerical integration approach in recent years. Since all asset return
information is defined in a characteristic function, the typical integral form involving a return
density function (Equation (11)) can be transformed into a series of summation terms using sim-
ple characteristic function valuations (Fang and Oosterlee, 2008). Therefore, switching between
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different return models involves simply plugging in corresponding characteristic functions. The
decomposition approach retains its natural simplicity, since valuations of vanilla options as well as
simple exotic options are readily available in closed form using stochastic volatility. While the first
three approaches can easily be extended to incorporate stochastic volatility, the PDE approach is
more restrictive. The only stochastic volatility model that can be expressed in the PDE approach
is the Heston model (Heston, 1993).

An Example with All Four approaches

In this section we demonstrate how to use each of the four approaches to value a Buffered PLUS
issued by Morgan Stanley on December 31, 2008 (CUSIP: 617483797). The Buffered PLUS has
a two-year term (T = 2) and is based on the S&P 500 index. The return mapping function for
this product is presented algebraically in Equation (1) and graphically in Figure 2. The product
has a leverage ratio of 2 (α = 2), a maximum allowed return of 60%, and a loss buffer of 10%.
This means that investors in this product lose money if the S&P 500 index drops more than 10%
during the two-year period, earn a 0% return if the S&P 500 index loses between 0% and 10%,
and make money if the S&P 500 index increases.17

We collect the necessary variables from Bloomberg. On the pricing date, the S&P 500 index
level was S0 = 863.16 and the index’s 24-month implied volatility was σ = 37.75%. We assume
the dividend yield will remain constant over the two years and use the annual dividend yield
q = 3.714% for each year. The continuously compounded 2-year treasury spot rate is r = 0.850%,
and the 2-year CDS quote for Morgan Stanley is CDS = 5.209%.

Using the Simulation Approach

To apply the simulation approach, we simulate monthly index levels St0 , St1 , St2 , . . . , St24 using the
discretized updating formula in Equation (8), where ∆t = 1/12. We simulate the index’s price
path J = 50, 000 times and use them to calculate Rj

T , j = 1, 2, . . . , 50, 000. We input each Rj
T

into the mapping function (Equation (1)) to obtain the structured product’s return f(Rj
T ). The

Buffered PLUS’ fair value is the present value of the average f(Rj
T ). Depending on the random

number seed we use, the value of the product ranges from $87.30 to $87.70.

Using the Numerical Integration Approach

To apply the numerical integration approach, we first define the function we want to integrate. In
this case, the function is

17 Summary information for this product is available at
http://www.sec.gov/Archives/edgar/data/895421/000095010308003056/dp12147_424b2-ps11.htm
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∫ ∞
−1

f(RT )pdf(RT )dRT , (14)

where
f(RT ) = min (RT + Buffer, 0) + min (αRT , Cap)−min (αRT , 0)

and pdf(RT ) is the distribution from Equation (6).
We use a numerical integration method with adaptive Lobatto quadrature provided in Matlab.

We require a tolerance level of 10e-10 and estimate the fair value of the product to be $87.52.

Using the Decomposition Approach

As described in Section , we apply the decomposition approach by calculating the fair value
of each of the product’s components. The Buffered PLUS’ payoff rule, described previously in
Equation (1), can be rewritten in terms of equity derivatives and a zero-coupon bond as follows:

P (ST ) = I(1 + f(RT ))

= I(1 + min (RT + Buffer, 0) + min (αRT , Cap)−min (αRT , 0))

= I

(
1 + min

(
ST − S0

S0

+ Buffer, 0

)
+ min

(
α
ST − S0

S0

, Cap

)
−min

(
α
ST − S0

S0

, 0

))
= I(1 + Cap)︸ ︷︷ ︸+

I

S0

min (ST − (S0 − S0Buffer), 0)︸ ︷︷ ︸
+
αI

S0

min

(
ST −

(
S0 +

S0Cap

α

)
, 0

)
︸ ︷︷ ︸−

αI

S0

min (ST − S0, 0)︸ ︷︷ ︸ (15)

By recalling that the payoff rule of a put option has the form P (ST ) = max(K−ST , 0), we can
decompose the Buffered PLUS payoff into four components:

1. A zero-coupon bond with a face value of I(1 + Cap).

2. I
S0

short put options with a strike price K of S0 − S0Buffer.

3. αI
S0

short put options with a strike price of S0 + S0Cap
α

.

4. αI
S0

long put options with a strike price of S0.

For this Buffered PLUS, the zero-coupon bond has a face value of $160 (I(1 +Cap) = 100(1 +
60%) = $160). The fair value of this component is

FairV alue = e(−CDS+r)T I(1 + Cap)
17
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= e−(5.209%+0.8496%)2 · $160

= $141.74. (16)

The second component is 0.1159 shares ( I
S0

= 100
863.16

= 0.1159) of short put options with a strike
price of 776.84 (S0 − S0Buffer = 863.16− 863.16 · 10% = 776.84). We then use the Black-Scholes
formula to calculate the option’s fair value. The fair value of one put option with these parameters
is $131.71, so the fair value of 0.1159 put options is $15.26.

The third component is 0.2317 shares (2 I
S0

= 2 · 0.1159 = 0.2317) of short put options with a

strike price of 1122.11 (K = S0 + S0Cap
α

= 863.16 + 863.16·60%
2

= 1122.11). Using the Black-Scholes
formula, we calculate the fair value of one put option with these parameters to be $346.35, meaning
the fair value of this component is $80.25.

The final component is 0.2317 shares (αI
S0

) of long put options at strike price of $863.16. The
fair value of one such option is $178.20, indicating the fair value of this component is $41.29.

We combine the fair values of the four components to calculate the fair value of the Buffered
PLUS.

$141.74− $15.26− $80.25 + $41.29 = $87.52

Presenting the Buffered PLUS’ payoff as a combination of options and a simple debt instrument
can help investors understand that the Buffered PLUS is heavily exposed to the downside risk of
the underlying security and the default risk of the issuer. The decomposition also shows the
investor that a portfolio of a zero-coupon bond and put options on the S&P 500 Index would
mimic the payoffs and stock market exposures of the product, but with less counterparty risk and
more liquidity. The same decomposition is represented graphically in Figure 3, included in the
Appendix.

In order to calculate the delta, we need to assume that the investment is I = S0, which means
comparing the structured product investment to the investment in the underlying securities. The
delta for a first component is 0, since the first component is a zero-coupon bond. Other components
include 1 share of short in-the-money put option, 2 shares of short at-the-money put options and
2 shares of long out-the-money put options. The deltas for the four components are 0, -0.30, -1.05,
and -0.73, respectively. The delta for the structured product is 0− (−0.30)− (−1.05) + (−0.73) =
0.63.

Using the PDE Approach

The Black-Scholes equation is the core equation used to value structured products, with boundary
conditions

V (S, T ) = P (ST ), V (0, t) = IBuffer e−(r+CDS)∗(T−t), V (S, t) ∼ I(1 + Cap) as S →∞.

We adopt the ‘dimensionless’ approaches in Wilmott et al. (1994) to simplify the equation
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and boundary conditions. Transforming the variable set (S, t) to a new variable set (x, τ) by the
following equations:

S = S0e
x, t = T − 2τ

σ2
, V (S, t) = S0e

αx+βτu(x, τ) + IBuffer e−(r+CDS)∗(T−t),

where the constants

k1 =
2(r − d)

σ2
, α = −1

2
(k1 − 1), β = −1

4
(k1 − 1)2 − 2(r + CDS)

σ2
.

The Black-Scholes equation after the change of variables becomes

∂u

∂τ
=
∂2u

∂x2
, for −∞ < x <∞, τ > 0.

The initial condition becomes

u(x, 0) = u0(x) (17)

= e
1
2

(k1−1)x I(1 + Cap− Buffer)

S0

+
I

S0

min
(
e

1
2

(k1+1)x − (1− Buffer)e
1
2

(k1−1)x, 0
)

+
αI

S0

min

(
e

1
2

(k1+1)x −
(

1 +
Cap

α

)
e

1
2

(k1−1)x, 0

)
−αI
S0

min
(
e

1
2

(k1+1)x − e
1
2

(k1−1)x, 0
)
. (18)

This is a standard heat equation with solution:

u(x, τ) =
1

2
√
πτ

∫ ∞
−∞

u0(s)e−(x−s)2/4τds.

The product value at issuance, plugging back τ = 1
2
Tσ2, is

V (S0, 0) = S0e
1
2
Tσ2βu(0,

1

2
Tσ2) + IBuffer e−(r+CDS)T .

Calculating the integral inside u(0, 1
2
Tσ2), the value matches that derived using the decompo-

sition approach.

Notice that the fair value is exactly the same using the numerical integration approach, the
decomposition approach, or the PDE approach. The fair value calculated using the simulation
approach is different because it varies depending on the number of simulated price paths, J , and
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the random seed. As J → ∞, the range of fair values provided by the simulation approach will
converge to $87.52.

Valuation Without Default Risk

In the example above, all four approaches yield a price of about $88. If we recalculate the price
assuming the probability of default is zero we get a price closer to $97. This highlights the
potentially important component that default risk has in the proper valuation of these investments.
Given the level of complexity of the valuation and the non-linear aspect of default it is possible that
part of the reason investors seem willing to purchase these investments at a substantial premium
may be that they do not fully comprehend the cost associated with default risk.

Another way to highlight this possibility is by comparing identical or almost identical products
issued by two different issuers that have substantially different default risk. For example, on De-
cember 31, 2007 both UBS and Morgan Stanley issued an essentially identical structured product,
an Absolute Return Barrier Note (ARBN).18

ARBNs are structured products that guarantee to return principal to the investor and a par-
ticipation if the reference index stays in between two barriers until maturity, as long as the issuer
does not default on the note.19 The two above notes have very similar parameters: they were
issued on December 31, 2007 and mature on June 30, 2009. The underlying security is the S&P
500 index. They differ in two ways: First, the UBS note has a maximum return of 25% and the
Morgan Stanley Note has a maximum return of 21%. Second, and most importantly, UBS had a
CDS spread of only 0.216% while Morgan Stanley had a CDS spread of 1.27%. Given those two
differences, one might expect the two notes to have a different price. However, they both were
priced at an identical $10 per note. Using our pricing algorithms we calculate that the value of
the UBS note is $9.65 per note and the Morgan Stanley one $9.37 per note.

This example, and many other similar examples of identical notes issued by different under-
writer with significant different default risks at the price, highlight the possibility that of the many
parameters that set the value of these complex products, default risk may not be properly priced
by investors, maybe partially explaining the popularity of these products that tend to sell at a
premium on average.

18 For the UBS prospectus see:
http://www.sec.gov/Archives/edgar/data/1114446/000139340107000374/v098098_69075-424b2.htm, and
for the Morgan Stanley prospectus see:
http://www.sec.gov/Archives/edgar/data/895421/000095010307003121/dp08060_424b2-ps443.htm.

19 See for example Deng et al. (2011a) for a discussion of these notes and their pricing.
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Conclusions

Until recently it has been difficult to estimate the fair value of many types of structured products
due to the complex nature of payoff rules. In this paper we have reviewed and demonstrated four
approaches that can be used to estimate the fair value of a wide variety of structured products,
highlighting the benefits and limitations of each approach. This work is based on and complements
our daily valuation of over 20,000 US structured products described in Deng et al. (2014b), as well
as our product-specific valuation experience in Deng et al. (2012), Deng et al. (2011b), Deng et al.
(2011a), Deng et al. (2010), and Deng et al. (2009).

Like many other researchers, we have documented significant issue date mispricing of many
types of structured products.20 We have also demonstrated that the issue date mispricing is largely
responsible for the poor ex–post performance of structured products in the aggregate. While this
mispricing could be due to transaction costs, underwriting fees, or differences in cost of capital
between issuers, it is likely that issuers price their products to secure a gross margin sufficient to
cover these costs and leave a net profit. The approaches described here, complemented by the
SEC’s new fair value disclosures for structured products, could detail the components of issue date
mispricing.

Currently, the numerical integration and decomposition approaches are able to value only a
subset of structured products, whereas the PDE and simulation approaches can value many more
kinds of products. We will be better able to use the numerical integration approach as we derive
the probability density functions of increasingly complex payoff rules. Similarly, as closed form
valuations become available for more derivative instruments, the number of structured product
types that can be valued using the decomposition approach will increase. In the meantime, simu-
lation approaches are becoming ever more sophisticated and can take advantage of improvements
in computational efficiency, especially in parallel environments. While valuation must keep up with
the enormous growth and innovation in the structured product market, the approaches outlined
here offer a powerful set of tools to investors and industry practitioners.
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Appendix
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Figure 3: Decomposition of a Buffered PLUS structured product
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Table 2: Structured products that are linked to the ending levels of the underlying
security

Structured Product Mapping graph
PLUS (Performance Leverage Upside Security),
Return Optimization Note, Stock Market Upturn
Notes:
The upside return is leveraged and capped, and
the downside return is one to one to the underly-
ing security.

f(RT ) =

{
min(αRT , Cap), if RT ≥ 0;
RT , if RT < 0.

Buffered PLUS, Return Optimization with Par-
tial Protection:
The upside return is leveraged and capped. The
downside return is partially protected by a return
buffer.

f(RT ) =

{
min(αRT , Cap), if RT ≥ 0;
min(RT + Buffer, 0), if RT < 0.

Principal Protected Notes
Principal is guaranteed to be paid back at matu-
rity, which means the product has returns greater
or equal to zero. The upside return is capped and
occasionally leveraged.

f(RT ) =

{
min(αRT , Cap), if RT ≥ 0;
0, if RT < 0.

Principal Protected Notes
An un-capped version of the principal protection
note.

f(RT ) =

{
αRT , if RT ≥ 0;
0, if RT < 0.
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